Real/binary-like coded versus binary coded genetic algorithms to automatically generate fuzzy knowledge bases: a comparative study

نویسندگان

  • Sofiane Achiche
  • Luc Baron
  • Marek Balazinski
چکیده

Nowadays fuzzy logic is increasingly used in decision-aided systems since it offers several advantages over other traditional decision-making techniques. The fuzzy decision support systems can easily deal with incomplete and/or imprecise knowledge applied to either linear or nonlinear problems. This paper presents the implementation of a combination of a Real/Binary-Like coded Genetic Algorithm (RBLGA) and a Binary coded Genetic Algorithm (BGA) to automatically generate Fuzzy Knowledge Bases (FKB) from a set of numerical data. Both algorithms allow one to fulfill a contradictory paradigm in terms of FKB precision and simplicity (high precision generally translates into a higher level of complexity) considering a randomly generated population of potential FKBs. The RBLGA is divided into two principal coding methods: (1) a real coded genetic algorithm that maps the fuzzy sets repartition and number (which drives the number of fuzzy rules) into a set of real numbers and (2) a binary like coded genetic algorithm that deals with the fuzzy rule base relationships (a set of integers). The BGA deals with the entire FKB using a single bit string, which is called a genotype. The RBLGA uses three reproduction mechanisms, a BLX-a; a simple crossover and a fuzzy set reducer, while the BGA uses a simple crossover, a fuzzy set displacement mechanism and a rule reducer. Both GAs are tested on theoretical surfaces, a comparison study of the performances is discussed, along with the influences of some evolution criteria. r 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...

متن کامل

Using Fuzzy Cognitive Maps for Prediction of Knowledge Worker Productivity Based on Real Coded Genetic Algorithm

  Improving knowledge worker productivity has been one of the most important tasks of the century. However, we have few measures or management interventions to make such improvement possible, and it is difficult to identify patterns that should be followed by knowledge workers because systems and processes in an organization are often regarded as a death blow to creativity. In this paper, we se...

متن کامل

Enhancing Rollover Threshold of an Elliptical Container Based on Binary-coded Genetic Algorithm

In this paper, a method based on binary-coded genetic algorithm is proposed to explore an optimization method, for obtaining an optimal elliptical tank. This optimization method enhances the rollover threshold of a tank vehicle, especially under partial filling conditions. Minimizing the overturning moment imposed on the vehicle due to c.g. height of the liquid load, lateral acceleration and ca...

متن کامل

Application of Self-adapting Genetic Algorithms to Generate Fuzzy Systems for a Regression Problem

Six variants of self-adapting genetic algorithms with varying mutation, crossover, and selection were developed. To implement selfadaptation the main part of a chromosome which comprised the solution was extended to include mutation rates, crossover rates, and/or tournament size. The solution part comprised the representation of a fuzzy system and was real-coded whereas to implement the propose...

متن کامل

Binary or Real? Real-coded Binary!

s: This paper presents a novel approach to improve the performance of genetic algorithms called genetic algorithms with real-coded binary representation (GARB). The proposed algorithm is capable of maintaining the population diversity during the whole run which protects it from premature convergence. This is achieved by using a special encoding scheme with a high redundancy, which is supported ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2004